WATSON FARLEY & WILLIAMS

ARE YOU A BIG FAN? EXPERT INSIGHT INTO OFFSHORE WIND IN THE UK 6 APRIL 2024

Who are we?

Who am I?

Why are we here?

Expert insight into offshore wind in the UK Who are we?

OUR EXPERTISE

WFW IS AN INTERNATIONAL ENERGY, INFRASTRUCTURE AND TRANSPORT LAW FIRM

WATSON FARLEY & WILLIAMS

Slide 3 © Watson Farley & Williams 2024

WFW's global footprint

Expert insight into offshore wind in the UK Who am I?

ENERGY REGULATION

- Legislation
- Licensing
- Subsidies

COMMERCIAL ARRANGEMENTS

- Power purchase agreements
- Battery optimisation agreements
- Revenue contracts

ENERGY INDUSTRY ARRANGEMENTS

- Grid support services (ancillary services)
- Industry codes e.g. Connection and use of system code

MARIANNE ANTON Counsel London Before we begin, an offshore wind primer

Offshore Wind Primer Electricity Basics – balancing supply and demand

Source: National Grid Electricity System Operator

Slide 7 © Watson Farley & Williams 2024

Offshore Wind Primer Electricity Basics – some numbers for context

2022 total GB figures:

- installed generation capacity = 76.7 GW
- generation production = 325.3 TWh
- demand = 320.7 TWh

Average UK household uses 2,700 kWh of electricity per year according to Ofgem

Dogger Bank Wind Farm will power 6 million homes per annum based on Typical Domestic Consumption Values in Britain (Medium Electricity Profile Class 1, 2,900 kWh per household; OFGEM, January 2021), typical 55% offshore wind load factor, and projected installed capacity of 3.6 GW

Offshore Wind Primer Why offshore wind? Geography.

Source: The Crown Estate

Denmark's Vestas is Europe's biggest maker of wind turbines

Slide 13 © Watson Farley & Williams 2024

BBC news, 31 August 2022: The world's largest offshore wind farm is now fully operational, 55 miles off the coast of Yorkshire.

The Hornsea 2 project can generate enough electricity to power about 1.3 million homes - that's enough for a city the size of Manchester.

Equinor, 10 October 2023: Major energy security milestone as world's largest offshore wind farm produces first power.

Dogger Bank is now connected to Britain's national grid and has started exporting electricity for the first time to British homes and businesses.

Offshore Wind Primer Types of technology

Source: https://www.windpowerengineering.com/ready-to-float-a-permanent-cost-reduction-for-offshore-wind/

Offshore Wind Primer Getting power onshore

Cross section of a 132 kV cable

Offshore Wind Primer Getting power onshore – Moray East case study

In 2014, Moray East was awarded planning permission in principle for a 500m planning corridor for the onshore cables which is shown outlined in red on the map above. Engineering work has been undertaken to refine proposals according to local circum-

stances, and a 45m wide cable and installation corridor has been developed. This is shown above by a broken black line.

Substation site in March 2019

Substation site in February 2020

Slide 18 © Watson Farley & Williams 2024

Cable Route

Offshore Wind Primer Getting power onshore – Dogger Bank case study

Part of the cable route from landfall at Ulrome.

Engineers check the progress of the cable installation.

The cable installation vessel just offshore installing the export

cables.

The Operations and Maintenance Base is now complete.

Offshore Wind Primer Some government statistics

Offshore Wind Primer Some government statistics

Chart 5.3 Electricity generated by fuel, 2000 to 2022 (Table 5.6)

Slide 21 © Watson Farley & Williams 2024

Expert insight into offshore wind in the UK Why offshore wind?

GEOGRAPHY:

- We are an island!
 - Territorial waters up to 12 miles
 - Continental shelf extended "renewable energy zone"
- Abundant and free natural resource + geography to support it
- Economics
 - Port infrastructure/ redevelopment
 - Job creation/ growth
 - Export expertise
- Government made a deliberate decision to pursue offshore wind

Expert insight into offshore wind in the UK Increasing ambition

9		
	December 20 ²	9
t to	Queen's speech	April 2020
y 2050 v v	ncreases offshore wind target 10GW by 2030	British Energy Security Strategy published 50GW by 2030
) /	2008 (i v 2050 v	2008 (Queen's speech increases offshore wind target 40GW by 2030

Expert insight into offshore wind in the UK Pipeline

Slide 25 © Watson Farley & Williams 2024

Expert insight into offshore wind in the UK Pipeline

Slide 26 © Watson Farley & Williams 2024

Expert insight into offshore wind in the UK Pipeline

Slide 27 © Watson Farley & Williams 2024

Expert insight into offshore wind in the UK Why privatise?

Year	£/MW (millions)	£/100 MW (millions)	£/1 GW (billions)
2006	1.37	137	1.37
2009	1.54	154	1.54
2013	3.17	317	3.17
2017	3.48	348	3.48
2026	2 (mate)	250	2.5
Scale of early o wind farm	ffshore s	e of current offshore wind farms	

Expert insight into offshore wind in the UK Why privatise?

Source: Scottish Parliament Information Centre, April 2023

https://spice-spotlight.scot/2023/04/26/wind-energy-in-scotland-current-position-and-future-plans/

Slide 29 © Watson Farley & Williams 2024

Expert insight into offshore wind in the UK The key players

Slide 31 © Watson Farley & Williams 2024

Expert insight into offshore wind in the UK Challenges to overcome

INFRASTRUCTURE

- Underinvestment in grid reinforcements across the country for decades
- It will take time to catch up so that the grid can support the level of wind planned

INSUFFICIENT SUPPLY CHAIN

- Global demand has increased we are not the only country reinforcing grid networks and building offshore wind farms!
- We will need a work force covering R&D, manufacturing, supply, installation and operation

INTERMITTENCY

- Wind is free and abundant, but unpredictable
- What do we do when the wind is not blowing?

Expert insight into offshore wind in the UK A closer look at intermittency

13:38	al S	? •	1:	3:39		? •	
GB Grid Carbo	n Intensity			GB Grid Car	bon Intensity		
41.	GW				288 gCO ₂ /kWh		
👌 Gas	22700 MW	(55.2%)	.0.	Gas	22700 MW	(55.2%)	
🐼 Nuclear	4500 MW	(10.9%)	*	Nuclear	4500 MW	(10.9%)	
A Biomass	2800 MW	(6.8%)	1	Biomass	2800 MW	(6.8%)	
🌞 Solar	2400 MW	(5.8%)	۱	Solar	2400 MW	(5.8%)	_
🕂 Wind	2400 MW	(5.7%)	4	Wind	2400 MW	(5.7%)	
🖄 France	1500 MW	(3.7%)	査	France	1500 MW	(3.7%)	
🖄 Norway	1400 MW	(3.4%)	<u></u>	Norway	1400 MW	(3.4%)	
ल Coal	960 MW	(2.3%)		Coal	960 MW	(2.3%)	
🖄 Belgium	690 MW	(1.7%)	査	Belgium	690 MW	(1.7%)	
🖄 Netherlands	590 MW	(1.4%)	査	Netherlands	590 MW	(1.4%)	
Other	500 MW	(1.2%)		Other	500 MW	(1.2%)	
対 Hydro	450 MW	(1.1%)	苹	Hydro	450 MW	(1.1%)	
C Updated 29/11/202	3 13:35 GMT	i	C	Updated 29/11/	/2023 13:35 GMT	í	

A still day in November 2023

WATSON FARLEY & WILLIAMS

Slide 33 © Watson Farley & Williams 2024

Expert insight into offshore wind in the UK A closer look at intermittency

22:5	51 🖴	all ²		223	51 🛱	all ²	
	GB Grid Carbon I	ntensity			GB Grid	Carbon Intensity	
	30.3	GW				197 gCO ₂ /kWh	
.0.	Gas	10600 MW	(35.2%)	.0.	Gas	11300 MW	(36.5%)
\uparrow	Wind	6900 MW	(22.6%)	个	Wind	6700 MW	(21.7%)
	Nuclear	4700 MW	(15.5%)		Nuclear	4700 MW	(15.3%)
囱	France	2300 MW	(7.7%)	直	France	2300 MW	(7.5%)
<i>1</i> 4 5	Biomass	2200 MW	(7.2%)	4	Biomass	2200 MW	(7.1%)
査	Norway	1400 MW	(4.6%)	囱	Norway	1400 MW	(4.5%)
査	Belgium	690 MW	(2.3%)	囱	Belgium	690 MW	(2.2%)
囱	Netherlands	540 MW	(1.8%)	囱	Netherlands	540 MW	(1.7%)
	Coal	350 MW	(1.2%)		Coal	350 MW	(1.1%)
林	Hydro	240 MW	(0.8%)	ᄷ	Hydro	240 MW	(0.8%)
in a	Other	190 MW	(0.6%)	.	Storage	220 MW	(0.7%)
.	Storage	150 MW	(0.5%)	i	Other	200 MW	(0.7%)
Ś	Updated 11/12/2023 22	2:50 GMT	í	Ś	Updated 1	1/12/2023 22:40 GMT	í

Expert insight into offshore wind in the UK A closer look at intermittency

Slide 35 © Watson Farley & Williams 2024

Expert insight into offshore wind in the UK A closer look at intermittency

Expert insight into offshore wind in the UK Conclusions

OFFSHORE WIND:

- Has been and will continue to be a UK success story
- Will play a big part in reaching net zero by 2050
- Not a silver bullet

Slide 38 © Watson Farley & Williams 2024

Expert insight into offshore wind in the UK Resources

- 4C Offshore https://www.4coffshore.com/
- The Crown Estate Offshore Wind -<u>https://www.thecrownestate.co.uk/our-</u> <u>business/marine/offshore-wind</u>
- Ofgem Offshore Transmission -<u>https://www.ofgem.gov.uk/energy-policy-and-regulation/policy-and-regulatory-programmes/offshore-electricity-transmission-ofto</u>
- British Energy Security Strategy -<u>https://www.gov.uk/government/publications/british-energy-</u> <u>security-strategy</u>
- Offshore Wind Sector Deal -<u>https://www.gov.uk/government/publications/offshore-wind-</u> sector-deal
- Offshore Renewable Energy Catapult <u>https://ore.catapult.org.uk/</u>
- Government electricity statistics -<u>https://www.gov.uk/government/collections/electricity-statistics</u>

ATHENS BANGKOK DUBAI DUSSELDORF FRANKFURT HAMBURG HANOI HONG KONG LONDON MADRID MILAN MUNICH NEW YORK PARIS ROME SEOUL SINGAPORE SYDNEY TOKYO

All references to 'Watson Farley & Williams', 'WFW' and 'the firm' in this document mean Watson Farley & Williams LLP and/or its Affiliated Entities. Any reference to a 'partner' means a member of Watson Farley & Williams LLP, or a member or partner in an Affiliated Entity, or an employee or consultant with equivalent standing and qualification. The transactions and matters referred to in this document represent the experience of our lawyers. This publication is produced by Watson Farley & Williams. It provides a summary of the legal issues, but is not intended to give specific legal advice. The situation described may not apply to your circumstances. If you require advice or have questions or comments on its subject, please speak to your usual contact at Watson Farley & Williams.

This publication constitutes attorney advertising.

Publication code numberEurope\75320870v1 © Watson Farley & Williams LLP 2024

wfw.com

